Automatic differentiation is a method by Seppo Linnainmaa for quickly computing the partial derivatives of a function defined by a straight line program. This method is very important in machine learning because it makes it easy to implement gradient-based optimization methods (which are, among other things, used to fit neural networks to data; did you know that neural networks are just straight line programs?).
Since I will teach this method in my class this semester, I thought I'd try my hand at implementing it.
The real "meat" of autodiff are the forward and backward methods. The rest is just a bunch of library functions that you can use in the straight line program.
Andrej Karpathy also has a nice implementation of autodiff for educational purposes.
import numpy as np class Var: def __init__(self, value=None, deriv=None, op=None, children=None, pds=None): self.value = value self.deriv = deriv self.op = op self.children = children self.pds = pds self.order = None def __repr__(self): return f'Var({self.value})' def forward(self): if self.order is None: self.order = topological_sort(self) for u in self.order: u.deriv = 0. if u.children is not None: u.value = u.op(*[ c.value for c in u.children ]) def backward(self): for v in reversed(self.order): if v == self: v.deriv = 1. if v.children is not None: local_values = [ c.value for c in v.children ] for c, pd in zip(v.children, v.pds): c.deriv += v.deriv * pd(*local_values) def add(a, b): return Var(op=np.add, children=[a, b], pds=[__add_pd, __add_pd]) def subtract(a, b): return Var(op=np.subtract, children=[a, b], pds=[_add_pd, __subtract_pd_b]) def multiply(a, b): return Var(op=np.multiply, children=[a, b], pds=[__multiply_pd_a, __multiply_pd_b]) def divide(a, b): return Var(op=np.divide, children=[a, b], pds=[__divide_pd_a, __divide_pd_b]) def negative(a): return Var(op=np.negative, children=[a], pds=[__negative_pd]) def square(a): return Var(op=np.square, children=[a], pds=[__square_pd]) def exp(a): return Var(op=np.exp, children=[a], pds=[__exp_pd]) def sin(a): return Var(op=np.sin, children=[a], pds=[__sin_pd]) def cos(a): return Var(op=np.cos, children=[a], pds=[__cos_pd]) def __add_pd(a, b): return 1. def __subtract_pd_b(a, b): return -1. def __multiply_pd_a(a, b): return b def __multiply_pd_b(a, b): return a def __divide_pd_a(a, b): return 1. / b def __divide_pd_b(a, b): return -a / (b * b) def __negative_pd(a): return -1. def __square_pd(a): return 2. * a def __exp_pd(a): return np.exp(a) def __sin_pd(a): return np.cos(a) def __cos_pd(a): return -np.sin(a) def topological_sort(v): visited = set() vertices = [] def explore(v): if v not in visited: visited.add(v) if v.children is not None: for c in v.children: explore(c) vertices.append(v) explore(v) return vertices if __name__ == '__main__': x = Var(value=1) w = Var(value=4) v1 = multiply(x, w) v2 = sin(v1) v3 = add(v1, v2) v4 = square(v2) v5 = exp(v3) v6 = multiply(v4, w) v7 = add(v5, v6) for t in range(30): v7.forward() v7.backward() print(f'w={w.value}, v7={v7.value}, (dv7)/(dw)={w.deriv}') w.value -= 0.1 * w.deriv print(f'w={w.value}, v7={v7.value}, (dv7)/(dw)={w.deriv}')
=> blog This content has been proxied by September (ba2dc).Proxy Information
text/gemini