FQA INDEX | FQA 5 - Building The System From Source | FQA 7 - System Management

=> FQA INDEX | FQA 5 - Building The System From Source | FQA 7 - System Management

FQA 6 - Networking

[‡ networking]

=> [‡ networking]

6.1 - Before we go any further

Plan 9’s approach to networking is unusual: most operations comprise reading and writing ("composing") byte streams ("files"). For the bulk of this document, it helps if you have read and at least partially understood FQA 0.1 - What is Plan 9?

=> fqa0.gmi

Next, read: The Organization of Networks in Plan 9

If you are working with applications such as web servers, FTP servers, and mail servers, you may benefit greatly by reading the RFCs.

=> http://doc.cat-v.org/plan_9/4th_edition/papers/net/ | reading the RFCs.

Note: A script for downloading all the RFCs is located in /lib/rfc/grabrfc. It copies the files into /lib/rfc/, and it may take hours for the script to run to completion.

=> https://code.9front.org/hg/plan9front/file/9ad06889a5d1/lib/rfc/grabrfc

6.2 - Network configuration

Basic networking is initially configured by the installation process. However, more complex settings or services may be desired. In Plan 9, network configuration is organized in ndb, the network database.

From ndb(6):

=> http://man.9front.org/6/ndb

The network database consists of files describing machines known to the local installation and machines known publicly. The files comprise multi-line tuples made up of attribute/value pairs of the form attr=value or sometimes just attr. Each line starting without white space starts a new tuple. Lines starting with # are comments.

The file /lib/ndb/local is the root of the database. Other files are included in the database if a tuple with an attribute-value pair of attribute database and no value exists in /lib/ndb/local. Within the database tuple, each pair with attribute file identifies a file to be included in the database. The files are searched in the order they appear. For example:

database= file=/lib/ndb/common file=/lib/ndb/local file=/lib/ndb/global

declares the database to be composed of the three files /lib/ndb/common, /lib/ndb/local, and /lib/ndb/global. By default, /lib/ndb/local is searched before the others. How- ever, /lib/ndb/local may be included in the database to redefine its ordering.

Within tuples, pairs on the same line bind tighter than pairs on different lines.

As mentioned, the installer adds basic information about the machine to the file /lib/ndb/local, based on the questions asked during the installation. This file may be edited to modify or expand the definition of the local network.

6.2.1 - Host name

Each machine on the network receives a corresponding section in ndb. The host name (hereafter referred to as sysname) is assigned by setting the sys= tuple:

sys=x301

The resulting sysname is used by the /rc/bin/termrc and /rc/bin/cpurc startup scripts, which in turn call upon any additional configuration that may exist in /cfg/$sysname/. (Look at the scripts to see how they deal with /cfg.)

6.2.2 - Identifying and setting up your network interfaces

Network interfaces are recognized by their MAC addresses, which are identified to ndb using the ether= tuple:

sys=x301 ether=00226811f7dd

Additional tuples in the same grouping will be used to configure the interface in question.

6.2.2.1 - WiFi

The following sections provide information pertaining to specific chipsets.

Read: plan9.ini(8), FQA Section 3.2 - Known Working Hardware

=> http://man.9front.org/8/plan9.ini | fqa3.gmi

6.2.2.1.1 - Interfaces

6.2.2.1.1.1 - wavelan

Lucent Wavelan (Orinoco) IEEE 802.11b and compatible PCMCIA cards. Compatible cards include the Dell TrueMobile 1150 and the Linksys Instant Wireless Network PC Card. Port and IRQ defaults are 0x180 and 3 respectively.

These cards take a number of unique options to aid in identifying the card correctly on the 802.11b network. The network may be ad hoc or managed (i.e. use an access point): mode=[adhoc, managed] and defaults to managed. The 802.11b network to attach to (managed mode) or identify as (ad hoc mode), is specified by essid=string and defaults to a null string. The card station name is given by station=string and defaults to Plan 9 STA. The channel to use is given by channel=number where number lies in the range 1 to 16 inclusive; the channel is normally negotiated automatically.

If the card is capable of encryption, the following options may be used: crypt=[off, on] and defaults to on. keyN=string sets the encryption key N (where N is in the range 1 to 4 inclusive) to string; this will also set the transmit key to N (see below). There are two formats for string which depend on the length of the string. If it is exactly 5 or 13 characters long it is assumed to be an alphanumeric key; if it is exactly 10 or 26 characters long the key is assumed to be in hex format (without a leading 0x). The lengths are checked, as is the format of a hex key. txkey=number sets the transmit key to use to be number in the range 1 to 4 inclusive. If it is desired to exclude or include unencrypted packets clear=[off, on] configures reception and defaults to inclusion.

The defaults are intended to match the common case of a managed network with encryption and a typical entry would only require, for example essid=left-armpit key1=afish key2=calledraawaru if the port and IRQ defaults are used. These options may be set after boot by writing to the device’s ctl file using a space as the separator between option and value, e.g. echo ’key2 1d8f65c9a52d83c8e4b43f94af’ >/net/ether0/0/ctl Card-specific power management may be enabled/disabled by pm=[on, off]

6.2.2.1.1.2 - wavelanpci

PCI Ethernet adapters that use the same Wavelan programming interface. Currently the only tested cards are those based on the Intersil Prism 2.5 chipset.

6.2.2.1.1.3 - iwl

Intel Wireless WiFi Link mini PCI-Express adapters require firmware from http://firmware.openbsd.org/firmware/iwn-firmware*.tgz to be present on attach in /lib/firmware or /boot. To select the access point, the essid= and bssid= parameters can be specified at boot or set during runtime like:

=> http://firmware.openbsd.org/firmware/iwn-firmware*.tgz

echo essid left-armpit >/net/ether1/clone

If both essid= and bssid= are specified, both must match. Scan results appear in the ifstats file and can be read out like:

cat /net/ether1/ifstats

Ad-hoc mode or WEP encryption is currently not supported. To enable WPA/WPA2 encryption, see wpa(8) for details.

=> http://man.9front.org/8/wpa

6.2.2.1.1.4 - rt2860

Ralink Technology PCI/PCI-Express wireless adapters require firmware from http://firmware.openbsd.org/firmware/ral-firmware*.tgz to be present on attach in /lib/firmware or /boot. See the iwl section above for configuration details.

=> http://firmware.openbsd.org/firmware/ral-firmware*.tgz | iwl

6.2.2.1.1.5 - wpi

Intel PRO Wireless 3945abg PCI/PCI-Express wireless adapters require firmware from http://firmware.openbsd.org/firmware//wpi-firmware.tgz to be present on attach in /lib/firmware or /boot. See the iwl section above for configuration details.

=> http://firmware.openbsd.org/firmware//wpi-firmware.tgz | iwl

6.2.2.1.2 - WPA

WPA1/TKIP and WPA2/CCMP are supported with the use of the wpa(8) command.

=> http://man.9front.org/8/wpa

Read: wpa(8)

=> http://man.9front.org/8/wpa

6.2.2.1.3 - WiFi Roaming

A script can be used to dynamically re-associate with available wifi access points:

http://plan9.stanleylieber.com/rc/wifiroam

Example usage:

@{wifiroam attwifi | aux/statusmsg -k wifiroam} &

6.2.2.1.4 - WiFi Debug

For cards that use the wifi layer, debug prints (note: will appear on the console) may be enabled with:

echo debug >'#l0/ether0/clone'

change this to suit if wifi interface is not #l0

or by adding debug=1 to the interface definition in plan9.ini.

Read: plan9.ini(8)

=> http://man.9front.org/8/plan9.ini

6.2.3 - IP address

The ip= tuple is used to associate an IP address with the machine:

sys=x301 ether=00226811f7dd ip=192.168.0.31

If no ip= tuple is present, the boot scripts will attempt to bring up the interface using DHCP (see below).

6.2.4 - Default gateway

The default gateway is configured using the ipgw= tuple, usually under an ipnet= section that defines default settings for an entire subnet:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1

but it may also be specified on a per-machine basis:

sys=x301 ether=00226811f7dd ip=192.168.0.31 ipgw=192.168.0.1

Note: Tuples included in the definition of a machine supercede those defined for the network to which the machine belongs.

6.2.5 - DNS Resolution

DNS resolvers may be specified using the dns= tuple, and may be configured for an entire network:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1

dns=192.168.0.1

or on a per-machine basis:

sys=x301 ether=00226811f7dd ip=192.168.0.31 dns=192.168.0.1

These changes will take effect after a reboot. To configure a DNS resolver on the fly, it is possible to manually edit /net/ndb :

ip=192.168.0.31 ipmask=255.255.255.0 ipgw=192.168.0.1

sys=x301

dom=x301.9front

dns=192.168.0.1

add or modify dns= lines to associate the DNS

server 192.168.0.1 with the running system

Note: /net/ndb is a synthetic file that represents the current operating state. It does not persist across reboots, and is only pre-populated when system networking was configured via DHCP. Changes to a blank /net/ndb file will match on the ip= tuple.

Read: ip(3)

=> http://man.9front.org/3/ip

Finally, to turn on debug in dns :

echo -n debug >/net/dns

6.2.5.1 - Caching DNS server

To run a caching DNS server, modify /cfg/$sysname/termrc or /cfg/$sysname/cpurc (whichever is appropriate) to include the following:

ndb/dns -rs

The caching DNS server will be started at boot time.

Next, modify /lib/ndb/local such that the desired machines will use the IP address of the new caching DNS server as their DNS server, either by changing the dns= tuple under the ipnet of the corresponding network or by adding a dns= tuple to the line of each desired machine.

Read: ndb(6) and ndb(8)

=> http://man.9front.org/6/ndb | http://man.9front.org/8/ndb

6.2.5.2 - DNS authoritative name server

An authoritative domain name record, with associated reverse-lookup and sub-domains, looks like this:

dom=bell-labs.co soa=

refresh=10800 ttl=10800

serial is automatically maintained if omitted

serial=2012110732

ns=ns5.he.net

ns=ns4.he.net

ns=ns3.he.net

ns=ns2.he.net

ns=nm.iawtp.com

ns=pp.iawtp.com

ns=mars2.iawtp.com

dnsslave=slave.dns.he.net

mb=sl@stanleylieber.com

mx=pp.inri.net pref=5

mx=nm.inri.net pref=10

mx=mars2.inri.net pref=15

txtrr="v=spf1 mx -all"

dom=125.191.107.in-addr.arpa soa=

refresh=3600 ttl=3600

ns=nm.iawtp.com

dom=bell-labs.co ip=107.191.125.208

dom=www.bell-labs.co cname=bell-labs.co

An FQDN may be assigned to an existing machine by adding the dom= tuple to its definition:

sys=x301 dom=x301.bell-labs.co ether=00226811f7dd ip=192.168.0.31

Note: The dnsslave entries specify slave DNS servers that should be notified when the domain changes. The notification service also requires the -n flag:

ndb/dns -nrs

Read: ndb(8)

=> http://man.9front.org/8/ndb

6.2.5.2.1 - Troubleshooting DNS authoritative name server

An online tool that evaluates the DNS configuration of a given domain name is available at: https://intodns.com

=> https://intodns.com

6.2.6 - Network-wide configuration

Settings for an entire network subnet may be defined under an ipnet= tuple:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0

ipgw=192.168.0.1

auth=192.168.0.2

authdom=9front

fs=192.168.0.3

cpu=192.168.0.4

dns=192.168.0.1

dnsdomain=9front

smtp=192.168.0.4

ethernet/wifi router

sys=onoff dom=onoff.9front ip=192.168.0.1

auth server

sys=auth dom=auth.9front ether=00d059b6dac8 ip=192.168.0.2

bootf=/386/9bootpxe

cpu server

sys=cpu dom=cpu.9front ether=001125149137 ip=192.168.0.4

bootf=/386/9bootpxe

file server

sys=fs dom=fs.9front ether=001641360117 ip=192.168.0.3

terminal

sys=x301 dom=x301.9front ether=00226811f7dd ip=192.168.0.31

bootf=/386/9bootpxe

6.2.7 - Activating the changes

6.2.7.1 - NIC

Network interfaces are automatically initialized at boot time. To make a manual change without rebooting, use the ipconfig(8) command:

=> ipconfig(8)

ip/ipconfig -g 192.168.0.1 ether /net/ether0 \

192.168.0.31 255.255.255.0

6.2.7.2 - cs

To refresh the network database NOW after changing /lib/ndb/local :

echo -n refresh > /net/cs

6.2.7.3 - dns

echo -n refresh > /net/dns

6.2.8 - Verifying network settings

% cat /net/ndb

ip=192.168.0.31 ipmask=255.255.255.0 ipgw=192.168.0.1

sys=x301

dom=x301.9front

auth=192.168.0.2

dns=192.168.0.1

6.2.8.1 - Checking routes

% cat /net/iproute

0.0.0.0         /96  192.168.0.1     4    none   -

192.168.0.0     /120 192.168.0.0     4i   ifc    0

192.168.0.0     /128 192.168.0.0     4b   ifc    -

192.168.0.31    /128 192.168.0.31    4u   ifc    0

192.168.0.255   /128 192.168.0.255   4b   ifc    -

255.255.255.255 /128 255.255.255.255 4b   ifc    0

6.2.8.1.1 - Adding static routes

Route requests for 192.168.1.0/24 through the gateway 192.168.0.99 (which itself must already be accessible via the existing network configuration):

echo 'add 192.168.1.0 255.255.255.0 192.168.0.99' >/net/iproute

Note: Manual configurations such as this may be added to optional boot scripts created in /cfg/$sysname/.

Read: ip(3)

=> http://man.9front.org/3/ip

6.2.9 - Setting up your 9front box as a forwarding gateway

Read: ip(3)

=> http://man.9front.org/3/ip

6.2.10 - Setting up aliases on an interface

Read: ip(3)

=> http://man.9front.org/3/ip

6.3 - How do I filter and firewall with 9front?

No.

6.4 - Dynamic Host Configuration Protocol (DHCP)

6.4.1 - DHCP client

In /lib/ndb/local, if no ip= tuple is present in the machine’s definition, the boot scripts will attempt to obtain an IP address via DHCP.

To obtain a DHCP lease manually:

ip/ipconfig

Read: ipconfig(8)

=> http://man.9front.org/8/ipconfig

6.4.2 - DHCP server

From dhcpd(8):

=> http://man.9front.org/8/dhcpd

Dhcpd runs the BOOTP and DHCP protocols.  Clients use these

protocols to obtain configuration information.  This infor-

mation comes from attribute/value pairs in the network data-

base (see ndb(6) and ndb(8)). DHCP requests are honored both

for static addresses found in the NDB and for dynamic

addresses listed in the command line.  DHCP requests are

honored if either:

- there exists an NDB entry containing both the ethernet

address of the requester and an IP address on the originat-

ing network or subnetwork.

- a free dynamic address exists on the originating network

or subnetwork.

A BOOTP request is honored if all of the following are true:

- there exists an NDB entry containing both the ethernet

address of the requester and an IP address on the originat-

ing network or subnetwork.

- the entry contains a bootf= attribute

- the file in the bootf= attribute is readable.

Dynamic addresses are specified on the command line as a

list of addresses and number pairs.  For example,

ip/dhcpd 10.1.1.12 10 10.2.1.70 12

directs dhcpd to return dynamic addresses 10.1.1.12 through

10.1.1.21 inclusive and 10.2.1.70 through 10.2.1.81 inclu-

sive.

Dhcpd maintains a record of all dynamic addresses in the

directory /lib/ndb/dhcp, one file per address.  If multiple

servers have access to this common directory, they will cor-

rectly coordinate their actions.

Attributes come from either the NDB entry for the system,

the entry for its subnet, or the entry for its network.  The

system entry has precedence, then the subnet, then the net-

work.  The NDB attributes used are:

ip      the IP address

ipmask  the IP mask

ipgw    the default IP gateway

dom     the domain name of the system

fs      the default Plan 9 file server

auth    the default Plan 9 authentication server

dns     a domain name server

ntp     a network time protocol server

time    a time server

wins    a NETBIOS name server

www     a World Wide Web proxy

pop3    a POP3 mail server

smtp    an SMTP mail server

bootf   the default boot file; see ndb(6)

Dhcpd will answer BOOTP requests only if it has been specif-

ically targeted or if it has read access to the boot file

for the requester.  That means that the requester must spec-

ify a boot file in the request or one has to exist in NDB

for dhcpd to answer.  Dhcpd will answer all DHCP requests

for which it can associate an IP address with the requester.

To configure a DHCP server on your system:

mkdir /lib/ndb/dhcp

and then modify /cfg/$sysname/cpurc or /cfg/$sysname/termrc (whichever is appropriate) to start dhcpd and tftpd at boot time:

ip/dhcpd

Read: dhcpd(8)

=> http://man.9front.org/8/dhcpd

6.5 - PPP

Read: Dailup modem config at the Bell Labs Plan 9 wiki.

=> Dailup modem config

6.6 - Setting up a network bridge in 9front

Read: bridge(3) and ip(3)

=> http://man.9front.org/3/bridge | http://man.9front.org/3/ip

6.7 - How do I boot from the network?

First, read FQA 7.3.3 - Setting up a listener for network connections. The file server should already be running a listener, and an auth server should already be configured and running on the network.

=> fqa7.gmi

6.7.1 - How do I tcp boot?

It is possible to boot from local media and then mount the root file system over the network. At the bootargs prompt, type tls (the old tcp boot option will still work but is not recommended because the connection will not be encrypted). At this point, ip/ipconfig will determine network parameters using DHCP. When file (fs) or authentication (auth) server IP addresses could not be determined over DHCP then the boot process will prompt for those. When prompted for a user, enter a valid username and password that has already been configured on the auth server. The machine should then proceed to mount its root file system from the file server.

Note: Values for fs and auth may be added to plan9.ini.

Read: plan9.ini(8)

=> http://man.9front.org/8/plan9.ini

6.7.1.1 - Passing arguments to ipconfig at the bootargs prompt

When a DHCP server is not available, you may still tcp boot by configuring networking manually at the bootargs prompt. Everything after tcp! is passed as arguments to the ipconfig command.

At the prompt:

bootargs is (tcp, tls, il, local!device) [tcp]

enter something like the following:

tls!-g 192.168.0.1 ether /net/ether0 192.168.0.23 255.255.255.0

where 192.168.0.1 is the gateway, 192.168.0.23 is the static IP address and 255.255.255.0 the subnet mask.

Read: ipconfig(8)

=> http://man.9front.org/8/ipconfig

6.7.2 - How do I boot using PXE?

It is also possible to PXE boot a system.

On the file server, add the following lines to /cfg/$sysname/cpurc to start dhcpd and tftpd at boot time:

ip/dhcpd

ip/tftpd

Add an entry for tftp under the appropriate ipnet= tuple in /lib/ndb/local :

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1

auth=192.168.0.2

authdom=9front

cpu=192.168.0.4

dns=192.168.0.1

dnsdomain=9front

smtp=192.168.0.4

tftp=192.168.0.3

Reboot the file server:

fshalt -r

To configure machines that will PXE boot from the file server, edit /lib/ndb/local on the file server and add a bootf= (boot file) tuple to the line representing each machine:

sys=x301 dom=x301.9front ether=00226811f7dd ip=192.168.0.31

bootf=/386/9bootpxe

For the system x301 we would then create a file /cfg/pxe/00226811f7dd on the file server to serve as its plan9.ini :

bootfile=/386/9pc

bootargs=tls

nobootprompt=tls

auth=192.168.0.2

fs=192.168.0.3

mouseport=ps2intellimouse

monitor=vesa

vgasize=1440x900x32

user=sl

Note: The user= parameter refers to a single username that has been added both to the file server (for file permissions) as well as to the auth server (for network authentication).

If a file matching the remote system’s MAC address is not found under /cfg/pxe/, the file /cfg/pxe/default (if it exists) will be used instead.

Finally, boot the desired remote systems via PXE. When prompted for a user, enter a valid username and password that has already been configured on the auth server. The remote system should now proceed to boot from the file server.

FQA INDEX | FQA 5 - Building The System From Source | FQA 7 - System Management

=> FQA INDEX | FQA 5 - Building The System From Source | FQA 7 - System Management

Proxy Information
Original URL
gemini://9til.de/fqa/fqa6.gmi
Status Code
Success (20)
Meta
text/gemini
Capsule Response Time
171.338806 milliseconds
Gemini-to-HTML Time
6.909614 milliseconds

This content has been proxied by September (ba2dc).