FQA INDEX | FQA 3 - Hardware | FQA 5 - Building The System From Source
=> FQA INDEX | FQA 3 - Hardware | FQA 5 - Building The System From Source
[‡ install] [‡ bar]
=> [‡ install] | [‡ bar]
ACHTUNG! This document (and the 9front installer) pertains only to the 386 install target. For other architectures, read: 8.9 - Bootstrapping architectures not included on the ISO
[‡ bar]
=> 8.9 - Bootstrapping architectures not included on the ISO | [‡ bar]
Before you start your install, you should have some idea what you want to end up with. You will want to know the following items, at least:
Machine name, hereafter referred to as sysname.
Hardware installed and available. Read: FQA 3.3 - Selecting Hardware. Check FQA 3.2 - Known Working Hardware as well as the various supported hardware pages on the Bell Labs Plan 9 wiki to help determine if your hardware or VM is supported.
=> fqa3.gmi | fqa3.gmi | various | supported | hardware
Network settings, if not using DHCP: Gather the requisite information for your network (IP, netmask, default gateway, etc.). If you plan to install in a VM, see FQA 3.3 - Virtual Machines.
=> fqa3.gmi
In case of trouble, see: FQA 9 - Troubleshooting, FQA 2.2.1 - Mailing List Archives
Obtain the 9front.iso.
=> fqa1.gmi
Read: 1.11.1 - Mirrors
=> fqa1.gmi
Booting from USB disk is handled the same way as booting from internal hard drive. There are two ways to create a bootable 9front USB:
1.) Write the ISO image directly to the USB device. Example:
cat 9front.iso >/dev/sdUxxxxx/data
2.) Alternately, the boot process is able to use an ISO image stored on a FAT file system as its root file system, so all that is needed is to install the 9boot(8) bootloader, a kernel and the 9front.iso on the USB disk. The following sections describe this process on Plan 9 and Linux.
=> http://man.9front.org/8/9boot
4.2.2.1 - Creating on Plan 9
The path to your USB device will look something like this: /dev/sdUxxxxx where xxxxx is the unique name of your usb device.
Build and install the mbr and boot loader:
cd /sys/src/boot/pc
mk 9bootfat mbr pbs
disk/mbr -m mbr /dev/sdUxxxxx/data
If it doesn’t already exist, create and format a FAT partition. Don’t forget to set the FAT partition active in the fdisk menu:
disk/fdisk -b /dev/sdUxxxxx/data
disk/format -b pbs -d -r 2 /dev/sdUxxxxx/dos
Mount the USB device:
dossrv -f /dev/sdUxxxxx/dos sdos
mount -c /srv/sdos /n/dos
Create a suitable /n/dos/plan9.ini :
bootfile=9pc
mouseport=ask
monitor=ask
vgasize=ask
Note: By convention, Plan 9 usually expects text files to end with a newline. If the last line of plan9.ini is not a newline, it could fail to be parsed correctly at boot time.
Copy files to the USB device:
cp /386/9bootfat /n/dos
chmod +al /n/dos/9bootfat # defrag magic
cp /386/9pc /n/dos
cp /path/to/9front.iso /n/dos
Optional for EFI systems:
cd /sys/src/boot/efi; mk install
mkdir -p /n/dos/efi/boot
cp /386/boot*.efi /n/dos/efi/boot
Unmount the USB device:
unmount /n/dos
rm -f /srv/sdos
Boot the device.
Read: prep(8)
=> http://man.9front.org/8/prep
4.2.2.2 - Creating on Linux
Note: There are numerous methods for creating bootable USB devices on Linux. This is one.
Obtain mbr, pbs, 9bootfat and 9pc binaries. Either copy them from the distributed ISO image (the files are located under /386/) or build up to date binaries on a 9front system. Read: FQA 5.2.2 - Building from source
=> fqa5.gmi
On the Linux system, create a $dir with that contains the following files:
9front.iso
9pc
plan9.ini (as described above)
9bootfat
mbr
pbs
Optional for EFI systems, create the directory boot in $dir and copy the files bootia32.efi and bootx64.efi into it.
Use the makebootfat tool to create bootable device (ie. /dev/sdc):
=> makebootfat
$ makebootfat -m $dir/mbr -b $dir/pbs -o /dev/sdc $dir
Boot the device.
4.2.2.3 - Bootargs
At the bootargs prompt you’ll need to enter the path to the ISO on the USB device. It will look something like this:
bootargs=local!/shr/sdUxxxxx/9front.iso
If a USB device is not listed, escape to a shell with!rc, and ls /shr to find it.
Read: 9.5.1 - Devices not recognized or not working
=> 9.5.1 - Devices not recognized or not working
There is nothing magical about installing Plan 9. It is simply a matter of populating a Plan 9 file system (cwfs or hjfs) and arranging a bootstrap to eventually load a Plan 9 kernel that can then use that file system as its root.
In most cases, the file server is the only machine that needs to have a disk. Once the initial file server is running, setting up an auth server, and enabling bootp and tftp for PXE booting, will allow Plan 9 terminals and cpu servers to load kernels from the file server and share its file system over the network.
Note: This guide describes the default installation of a terminal with disk, which is an amalgamation of a normal Plan 9 network, but is sufficient for exploring the basics of using Plan 9. Configuration of additional services (such as a file server with networking listeners, a cpu server, etc.) is outlined in FQA 7 - System Management.
=> fqa7.gmi
To install 9front, boot the 9front.iso image and follow the steps below.
Successfully booting the system will result in basic information about the state of the system being printed on screen:
Plan 9
126 holes free
00018000 0009f000 552960
00485000 0cf2c000 212496384
213049344 bytes free
cpu0: 3395MHz GenuineIntel P6
ELCR: 0E20
mylex ctlr @ port 0x10c0: 32-bit wide SCSI host adapter
512M memory: 207M kernel data, 304M user, 929M swap
nusb/usbd: /dev/usb: no hubs
A list of attached storage devices is printed, followed by a prompt asking for a Plan 9 partition to boot from:
/dev/sdC0: VMware Virtual IDE Hard Drive
/dev/sdC0/data
/dev/sdD0: VMware Virtual IDE CDROM Drive
/dev/sdD0/data 9660
bootargs is (tcp, il, local!device) [local!/dev/sdD0/data]
In most cases, the suggested default will correspond to the device used to boot the ISO image.
Next, a prompt asks for a username:
user[glenda]:
Glenda is the default hostowner name. Don’t change this until you know what you are doing. Hit enter to accept the default.
Note: The hostowner differs from the concept of root on a UNIX system, where a single user root may take control of all processes and files on the system. By contrast, even the hostowner of a Plan 9 file server cannot violate file permissions on the file system, except when permissions checking is disabled on the console or when entering special commands at the console of the file server. The hostowner controls only the processes running on the local machine (in the case of the filserver, the file server process itself is obviously owned by the system’s hostowner). This fundamental separation between control of processes and file permissions is exploited throughout the system, but can be confusing for users coming from a UNIX background.
The next set of prompts deal with graphics display and the mouse:
vgasize is (text, 640x480x8, 1024x768x16, ...) [1024x768x16]
monitor is (vesa, xga, lcd, ...) [vesa]
mouseport is (ps2, ps2intellimouse, 0, 1, 2) [ps2]
The boot process prompts for the environment variables $vgasize, $monitor and $mouseport, and the installer will later write those values to the system’s plan9.ini, from which they are loaded on subsequent system bootup.
Setting $monitor to anything besides vesa will bypass the emulated VESA BIOS and attempt to use a native VGA driver for the video card in question. Read: /lib/vgadb for a list of monitors and video cards that are already known by the system; and the man pages vga(3), vga(8) and vgadb(6) for more information about how graphical displays are configured.
=> http://code.9front.org/hg/plan9front/file/9d875116b400/lib/vgadb | http://man.9front.org/8/vga | http://man.9front.org/6/vgadb
The default $mouseport of ps2 is sufficient in most cases. Set it to ps2intellimouse on laptops or for mice that have a scrollwheel.
Note: Some laptops require the trackpad to be disabled in the BIOS in order for mouse button 2 (the center button) to function in Plan 9. In a pinch, mouse button 2 may be simulated by holding down the shift key while clicking mouse button 3 (the right button).
After the install, changes intended to persist across reboots should be added to plan9.ini.
Examples:
Values as they appear in plan9.ini:
monitor=vesa
vgasize=1024x768x16
mouseport=ps2intellimouse
Read: mouse(8), vga(3), vgadb(6), plan9.ini(8), realemu(8), vga(8), FQA 7.2.2 - How do I modify plan9.ini?
=> http://man.9front.org/8/mouse | http://man.9front.org/3/vga | http://man.9front.org/6/vgadb | http://man.9front.org/8/plan9.ini | http://man.9front.org/8/realemu | http://man.9front.org/8/vga | fqa7.gmi
After the mouseport prompt is answered, the boot process will attempt to start the Plan 9 graphical environment, rio(1), opening a stats(8) window and a rio window on top of a gray desktop background.
[‡ livecdrio]
=> http://man.9front.org/1/rio | http://man.9front.org/8/stats | [‡ livecdrio]
4.3.4.1 - Changing screen resolution
At this point it may be desireable to change the screen resolution. To change video mode from the command line:
vesa:
Note: Only valid modes listed in the VESA BIOS may be used.
@{rfork n; aux/realemu; aux/vga -p}
@{rfork n; aux/realemu; aux/vga -m vesa -l 1024x768x16}
vga:
aux/vga -m dellst2210 -l 1920x1080x32
Installation is performed by the rc scripts in /rc/bin/inst. To begin the installation, type inst/start in the terminal window. Follow the prompts to complete the installation, selecting the defaults where appropriate.
Note: Any task may be repeated by manually entering its name at the next Task to do prompt.
term% inst/start
Tue Jul 17 12:38:50 CET 2012 Installation process started
The following Task to do steps are handled one at a time:
You can install the following types of systems:
cwfs64x the cached-worm file server
hjfs the new 9front file server (experimental!)
File system (cwfs64x, hjfs)[cwfs64x]:
Note: The cwfs64x file server uses 16KB blocks, with its cache and permanent storage locate on separate partitions. The hjfs file server uses 4KB blocks, with its cache and permanent storage located on the same partition. If you are installing to a disk of less than 12GB, you should choose hjfs.
In this example we will press enter to accept cwfs64x as the default.
The following disk devices were found.
sdC0 - VMware Virtual IDE Hard Drive
empty 0 3916 (3916 cylinders, 29.99 GB)
sdD0 - VMware Virtual IDE CDROM Drive
Disk to partition (sdC0, sdD0)[no default]:
Enter the media you wish to install to.
Disk to partition (sdC0, sdD0)[no default]: sdC0
The disk you selected HAS NO master boot record on its first sector.
(Perhaps it is a completely blank disk.)
Shall we create a blank EFI partition table (GPT)
or install traditional DOS partition table (MBR)?
Assuming a blank disk image, install a fresh mbr:
Install mbr or gpt (mbr, gpt)[no default]: mbr
This is disk/fdisk; use it to create a Plan 9 partition.
If there is enough room, a Plan 9 partition will be
suggested; you can probably just type ’w’ and then ’q’.
cylinder = 8225280 bytes
For this example we will use the entire disk. Accept the defaults.
w
q
The following Plan 9 disk partitions were found.
/dev/sdC0/plan9
empty 0 62910477 (62910477 sectors, 29.99 GB)
Plan 9 partition to subdivide (/dev/sdC0/plan9)[/dev/sdC0/plan9]:
Use the Plan 9 partition created in the previous step. Hit ‘enter‘ to select the default.
This is disk/prep; use it to subdivide the Plan 9 partition.
If it is not yet subdivided, a sensible layout will be suggested;
you can probably just type ’w’ and then ’q’.
no plan9 partition table found
9fat 204800
nvram 1
other 8957953
fscache 8957953
fsworm 44789770
Again, accept the defaults.
w
q
The please choose your cwfs64x partitions
Hit enter to select each partition at the prompt.
--rw-r----- S 0 glenda glenda 4586471936 Jul 4 13:28 /dev/sdC0/fscache
Cwfs cache partition (/dev/sdC0/fscache)[/dev/sdC0/fscache]:
--rw-r----- S 0 glenda glenda 22932362240 Jul 4 13:28 /dev/sdC0/fsworm
Cwfs worm partition (/dev/sdC0/fsworm)[/dev/sdC0/fsworm]:
--rw-r----- S 0 glenda glenda 4586471936 Jul 4 13:28 /dev/sdC0/other
Cwfs other partition (/dev/sdC0/other)[/dev/sdC0/other]:
Since this is a fresh install, we choose yes to ream (format) the file system:
Ream the file system? (yes, no)[no]: yes
Starting cwfs64x file server for /dev/sdC0/fscache
Reaming file system
bad nvram key
bad authentication id
bad authentication domain
nvrcheck: can’t read nvram
config: config: config: auth is now disabled
config: config: config: config: config: config: current fs is "main"
cmd_users: cannot access /adm/users
63-bit cwfs as of Wed Jul 4 00:59:30 2012
last boot Tue Jul 17 13:34:57 2012
Configuering cwfs64x file server for /dev/sdC0/fscache
Mounting cwfs64x file server for /dev/sdC0/fscache
% mount -c /srv/cwfs /n/newfs
Mounting cwfs64x file server for /dev/sdC0/other
% mount -c /srv/cwfs /n/other other
Are you going to download the distribution
from the internet or do you have it on local media?
Distribution is from (local, net)[local]:
We are installing from local media, so, local. Hit ‘enter‘ to accept the default.
Note: The net option attempts to download the ISO from the Internet and install it directly to disk. Since the installer is most likely already running from an ISO image, this option may prove to be of limited utility. The option is somewhat experimental, and may work. Attempt it at your own risk.
You can connect to the internet via
a local ethernet or a dial-up PPP connection.
Interface to use (ether, ppp)[ether]:
Please choose a method for configuring your ethernet connection.
manual - specify IP address, network mask, gateway IP address
dhcp - use DHCP to automatically configure
Configuration method (manual, dhcp)[dhcp]:
4.3.11.1 - dhcp
Hit enter to move on to the next task.
4.3.11.2 - manual
If you chose manual, enter values that are appropriate for your network.
Configuration method (manual, dhcp)[dhcp]: manual
ip address [no default]: 10.0.2.15
network mask [no default]: 255.255.255.0
gateway address [no default]: 10.0.2.2
Please wait... Scanning storage devices...
/dev/sdC0/9fat
/dev/sdC0/data
/dev/sdC0/fscache
/dev/sdC0/fsworm
/dev/sdC0/other
/dev/sdD0/data
The following storage media were detected.
Choose the one containing the distribution.
/dev/sdD0/data (iso9660 cdrom)
Distribution disk (/dev/sdD0/data, /dev/sdC0/fscache, /)[/]:
The CD-ROM is already mounted at /, so we hit enter to choose the default.
% mount /srv/boot /n/distmedia
Which directory contains the distribution?
Any of the following will suffice (in order of preference):
- the root directory of the cd image
- the directory containing 9front.iso
- the directory containing 9front.iso.bz2
Location of archives [/]:
And again, the root directory of the CD-ROM is already mounted at /, so hit enter to choose the default.
% mount /srv/boot /n/distmedia
Which directory contains the distribution?
Any of the following will suffice (in order of preference):
- the root directory of the cd image
- the directory containing 9front.iso
- the directory containing 9front.iso.bz2
Location of archives [/]:
Hit enter.
Hit enter at the copydist prompt to begin the process of copying the distribution files from the install media to the hard disk.
processing /sys/lib/sysconfig/proto/allproto
[‡ bar]
=> [‡ bar]
ACHTUNG! Currently, there is no progress meter. For systems without DMA, the copydist task may exceed one hour in duration. Disk activity may be verified by inspecting the stats(8) window.
[‡ bar]
=> http://man.9front.org/8/stats | [‡ bar]
Eventually, you should see the following:
file system made
This indicates that the system files have completed copying to the install target.
Setup network configuration
sysname [cirno]:
Use a system name of your choice, or just hit enter to select the default.
Setup Time Zone
Time Zone (Argentina, Australia_ACT, Australia_Broken-Hill,
Australia_LHI, Australia_NSW, Australia_North, Australia_Queensland,
Australia_South, Australia_Sturt, Australia_Tasmania,
Australia_Victoria, Australia_West, Australia_Yancowinna, Brazil_Acre,
Brazil_DeNoronha, Brazil_East, Brazil_West, CET, Canada_Atlantic,
Canada_Central, Canada_East-Saskatchewan, Canada_Eastern,
Canada_Mountain, Canada_Newfoundland, Canada_Pacific, Canada_Yukon,
Chile_Continental, Chile_EasterIsland, Cuba, EET, Egypt, GB-Eire, GMT,
HST, Hongkong, Iceland, Iran, Israel, Jamaica, Japan, Libya,
Mexico_BajaNorte, Mexico_BajaSur, Mexico_General, NZ, NZ_CHAT, Navajo,
PRC, Poland, ROC, ROK, Singapore, Turkey, US_Alaska, US_Arizona,
US_Central, US_East-Indiana, US_Eastern, US_Hawaii, US_Michigan,
US_Mountain, US_Pacific, US_Yukon, W-SU, WET)[US_Eastern]:
Daylight saving time (DST) is handled automatically. Type your chosen time zone and hit enter.
Setup Plan 9 FAT boot partition (9fat)
Plan 9 FAT partition (/dev/sdC0/9fat)[/dev/sdC0/9fat]:
Hit enter to accept the default. Any environment variables entered at the> prompt during boot, as well as settings configured during install will now be written to /n/9fat/plan9.ini and the kernel will be copied to the 9fat partition.
dossrv: serving #s/dos
Initializing Plan 9 FAT partition.
% disk/format -r 2 -d -b /386/pbs /dev/sdC0/9fat
Initializing FAT file system
type hard, 12 tracks, 255 heads, 63 sectors/track, 512 bytes/sec
used 4096 bytes
% mount -c /srv/dos /n/9fat /dev/sdC0/9fat
% rm -f /n/9fat/9bootfat /n/9fat/plan9.ini /n/9fat/9pc
% cp /n/newfs/386/9bootfat /n/9fat/9bootfat
% chmod +al /n/9fat/9bootfat
% cp /tmp/plan9.ini /n/9fat/plan9.ini
% cp /n/newfs/386/9pc /n/9fat/9pc
If you use the Windows NT/2000/XP master boot record
or a master boot record from a Unix clone (e.g., LILO or
FreeBSD bootmgr), it is probably safe to continue using
that boot record rather than install the Plan 9 boot record.
Since we are not installing on a disk with a pre-existing Windows installation, we choose to install the Plan 9 master boot record and mark the partition active:
Install the Plan 9 master boot record (y, n)[no default]: y
Mark the Plan 9 partition active (y, n)[no default]: y
The Plan 9 partition is now marked as active.
The final task is to remove (or disable) the CD-ROM and finish by hitting enter to reboot the machine.
Congratulations, you’ve just installed a 9front system! Now your cat goes to sleep on the keyboard.
[‡ cinapcatdrawing]
[‡ cryptsetup]
9front supports booting from encrypted fsworm, fscache and other partitions. The following assumes a hard drive /dev/sdC0:
• Begin the installation process as normal by booting 9front.iso.
=> 9front.iso.
• During partdisk and prepdisk, create the fsworm, fscache and other partitions as normal.
• At the mountfs prompt, enter!rc to drop to a shell prompt.
• Format and activate the encrypted partitions (generates new encryption key):
disk/cryptsetup -f /dev/sdC0/fsworm /dev/sdC0/fscache /dev/sdC0/other
disk/cryptsetup -i /dev/sdC0/fsworm /dev/sdC0/fscache /dev/sdC0/other
• Type exit to resume the installation.
• During mountfs, select the partitions under /dev/fs instead of the ones under /dev/sdC0.
• During the rest of the installation, select the defaults, where appropriate.
• During post-installation boot, at the bootargs prompt, type!rc to drop to a shell prompt.
• Activate the encrypted partitions (prompts for password):
disk/cryptsetup -i /dev/sdC0/fsworm /dev/sdC0/fscache /dev/sdC0/other
• Type exit to resume booting.
• At the bootargs prompt, enter local!/dev/fs/fscache to continue booting from the encrypted partition.
Note: Encrypted partitians are largely untested. Data integrity is not guaranteed. Use at your own risk.
Encrypted partitions have not been tested with hjfs.
Read: cryptsetup(8)
=> http://man.9front.org/8/cryptsetup
FQA INDEX | FQA 3 - Hardware | FQA 5 - Building The System From Source
=> FQA INDEX | FQA 3 - Hardware | FQA 5 - Building The System From Source This content has been proxied by September (ba2dc).Proxy Information
text/gemini